ANPEC 2003 - Q2

Ver o tópico anterior Ver o tópico seguinte Ir em baixo

ANPEC 2003 - Q2

Mensagem por temujin em Seg Abr 08, 2013 6:10 pm

(0) A equação da reta que passa por P0(2,-1) e é perpendicular à reta que passa pelos pontos P1(2,-2) e P2(5,0) é 3x+2y=5.

F. Esta reta não passa por P0: 3(2)+2(-1)=4

(1) As retas a0x+b0y-c0=0 e a1x+b1y-c1=0 interceptam-se caso a0a1+b0b1=0.

V. Neste caso, elas são perpendiculares.

(2) Se existe , então o ponto P0(x0,y0,z0) está sobre a reta determinada por P1(2,3,5) e P2(3,5,4).

V. O vetor diretor da reta que passa por P1 e P2 é:



Logo, as equações paramétricas da reta são dadas por:

x=2+t
y=3+2t
z=5-t

Igualando às coordenadas de P0:



Logo, para existe um valor , tal que P0 pertence à reta.


(3) Se a distância do ponto P(x,y,z) ao ponto Q(1,-2,0) é 5, então x2+y2+z2-2x+4y=20.

V. A distância de P a Q é dado pela norma do vetor QP:




(4) A equação do plano perpendicular ao plano 2x-3y+z-5=0 e que passa pelos pontos P0(2,-6,4) e P1(3,-6,5) é 3x+y-3z=0.

F. Testando os pontos: 3(2)+1(-6)-3(4) = -12 # 0
avatar
temujin

Mensagens : 397
Data de inscrição : 10/03/2013

Ver perfil do usuário

Voltar ao Topo Ir em baixo

Ver o tópico anterior Ver o tópico seguinte Voltar ao Topo

- Tópicos similares

 
Permissão deste fórum:
Você não pode responder aos tópicos neste fórum